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p 3 Announcements

= Should be able to really start project after today’s lecture

= Get familiar with bit-twiddling in Java (e.g. &, |, <<, >>)

= No external libraries / code

= We will go over KN again in recitation — edge cases

= Tentative office hours:
= Me:
= Maria:
= Hieu:
= Akshay:



p 3 Language Models

= Language models are distributions over sentences

= N-gram models are built from local conditional probabilities

P(wl . wn) — HP(wi|wi_k...wi_1)

= The methods we’ve seen are backed by corpus n-gram counts

C(wi—Za Wi—1, wi)

C(wz’—Za wi—l)

p(wi|wi—1,wz’—2) —



W Kneser-Ney Smoothing

= Kneser-Ney smoothing combines two ideas
= Discount and reallocate like absolute discounting

" |n the backoff model, word probabilities are proportional
to context fertility, not frequency

P(w) o< {w' : c(w’,w) > 0}

" Theory and practice
= Practice: KN smoothing has been repeatedly proven both
effective and efficient

= Theory: KN smoothing as approximate inference in a
hierarchical Pitman-Yor process [Teh, 2006]



E& Kneser-Ney Edge Cases

Py (wlprevy, ;) =

All orders recursively discount and back-off:

max (¢’ (prev,_,,w) — d,0)
>y ¢ (Prevy_y,v)

+ a(prev k — 1) Py _1(w|prev, )
The unigram base case does not need to discount (though it can)

Alpha is computed to make the probability normalize (but if context count
is zero, then fully back-off)

For the highest order, ¢’ is the token count of the n-gram. For all others it
is the context fertility of the n-gram (see Chen and Goodman p. 18):

d(z) = H{u: c(u,z) > 0}



p 3 dea 4: Big Data

There’s no data like more data.



Data >> Method?

= Having more data is better...
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= .. butsoisusing a better estimator
= Anotherissue: N > 3 has huge costs in speech recognizers
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Tons of Data?
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What about...



p 3 Unknown Words?

* What about totally unseen words?

= Most LM applications are closed vocabulary

= ASR systems will only propose words that are in their pronunciation
dictionary

= MT systems will only propose words that are in their phrase tables
(modulo special models for numbers, etc)

" |n principle, one can build open vocabulary LMs
= E.g. models over character sequences rather than word sequences
= Back-off needs to go down into a “generate new word” model
= Typically if you need this, a high-order character model will do



W What'sin an N-Gram?

= Just about every local correlation!

= \Word class restrictions: “will have been o

/A

= Morphology: “she 7, “they "
= Semantic class restrictions: “danced the "

)

= |dioms: “add insult to

= World knowledge: “ice caps have g

= Pop culture: “the empire strikes  ”
= But not the long-distance ones

= “The computer which | had just put into the machine room
on the fifth floor .



What Actually Works?

Trigrams and beyond:

= Unigrams, bigrams generally
useless

= Trigrams much better

= 4-,5-grams and more are
really useful in MT, but gains
are more limited for speech

Discounting

= Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell, etc...

Context counting

= Kneser-Ney construction of
lower-order models

See [Chen+Goodman] reading
for tons of graphs...
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W What'sin an N-Gram?

= Just about every local correlation!

= \Word class restrictions: “will have been o

/A

= Morphology: “she 7, “they "
= Semantic class restrictions: “danced the "

)

= |dioms: “add insult to

= World knowledge: “ice caps have g

= Pop culture: “the empire strikes  ”
= But not the long-distance ones

= “The computer which | had just put into the machine room
on the fifth floor .



p 3 Linguistic Pain?

= The N-Gram assumption hurts one’s inner linguist!

= Many linguistic arguments that language isn’t regular
= Long-distance dependencies
= Recursive structure

= Answers
= N-grams only model local correlations, but they get them all
= As N increases, they catch even more correlations
= N-gram models scale much more easily than structured LMs

= Not convinced?
= Can build LMs out of our grammar models (later in the course)

= Take any generative model with words at the bottom and marginalize
out the other variables



W What Gets Captured?

" Bigram model:

= [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler,
house, said, mr., gurria, mexico, 's, motion, control, proposal, without,
permission, from, five, hundred, fifty, five, yen]

= [outside, new, car, parking, lot, of, the, agreement, reached]
= [this, would, be, a, record, november]

= PCFG model:
= [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk,
involving, IRS, leaders, and, transportation, prices, .]
= [It, could, be, announced, sometime, .]

= [Mr., Toseland, believes, the, average, defense, economy, is, drafted,
from, slightly, more, than, 12, stocks, .]



p 3 Other Techniques?

= |ots of other techniques
= Maximum entropy LMs (soon)
= Neural network LMs (soon)

= Syntactic / grammar-structured LMs (much later)



How to Build an LM



Tons of Data

" Good LMs need lots of n-grams!
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p 3 Storing Counts

= Key function: map from n-grams to counts

searching for the best 192593
searching for the right 45805
searching for the cheapest 44965
searching for the perfect 43959

searching for the truth 23165
searching for the “ 19086
searching for the most 15512
searching for the latest 12670
searching for the next 10120
searching for the lowest 10080
searching for the name 8402

searching for the finest 8171




% Example: Google N-Grams

Google N-grams

* |4 million < 22* words
e 2 billion < 23! 5-grams
e 770 000 < 2?0 unique counts
* 4 billion n-grams total




Efficient Storage



¥

Naive Approach

c(cat) =12
c(the) =87
c(and) =76

c(dog) =11

c(have) =7

hash(cat) =2
hash(the) =2
hash(and) =5

hash(dog) =7

hash(have) = 2

N o oo 0NN - O

key value

12

87

76

11




A Simple Java Hashmap?

Per 3-gram:
1 Pointer = 8 bytes
1 Map.Entry = 8 bytes (obj)
+3x8 bytes (pointers)
1 Double = 8 bytes (obj)

T + 8 bytes (double)
—_ I I —_— ... at best Strings are canonicalized
l Total: > 88 bytes

Obvious alternatives:
- Sorted arrays
- Open addressing




W& Open Address Hashing

key value
c(cat) =12 hash(cat) = 2 0
c(the) = 87 hash(the) =2 1
2
c(and) =76 hash(and) =5 3
c(dog) =11 hash(dog) =7 4
5
6
7




W& Open Address Hashing

key value

c(cat) =12 hash(cat) = 2 0
c(the) = 87 hash(the) =2 1

2 12
c(and) =76 hash(and) =5 3 g7
c(dog) =11 hash(dog) =7 4

5 5

6
c(have) =7? hash(have) = 2 7 7




W& Open Address Hashing

key value

c(cat) =12 0
c(the) =87 1
2

c(and) =76 3
c(dog) =11 4
5

6

Vi

14

15




}f@ Efficient Hashing

" Closed address hashing
= Resolve collisions with chains

= Easier to understand but bigger

= Open address hashing
= Resolve collisions with probe sequences
= Smaller but easy to mess up

= Direct-address hashing
= No collision resolution
= Just eject previous entries
= Not suitable for core LM storage



A Simple Java Hashmap?

Per 3-gram:
1 Pointer = 8 bytes
1 Map.Entry = 8 bytes (obj)
+3x8 bytes (pointers)
1 Double = 8 bytes (obj)

T + 8 bytes (double)
—_ I I —_— ... at best Strings are canonicalized
l Total: > 88 bytes

Obvious alternatives:
- Sorted arrays
- Open addressing




p 3 Integer Encodings

word ids
15

1

the cat laughed —m> 233

n-gram count



¥

Bit Packing

Got 3 numbers under 229 to store?

7
0...00111

1
0...00001

15
0...01111

20 bits

20 bits

20 bits

Fits in a primitive 64-bit long




p 3 Integer Encodings

n-gram encoding

15176595 = |20bits | 20 bits | 20 bits

—the—eat—laughed— —> 233

n-gram count




p 3 Rank Values

c(the) =23135851162 < 23>

35 bits to represent integers between 0 and 23>

35 bits




p 3 Rank Values

# unique counts = 770000 < 229

20 bits to represent ranks of all counts

rank freq
20 bits 0 1
I 1 2
% 3
2 51
rank 3 233




So Far

Word indexer

word

id

cat

the

was

ran

w N = 10O

Rank lookup

rank

freq

0

1

2

51

1
2
3

233

N-gram encoding scheme

unigram: f(id) =
bigram:  f(id,, id,) =
trigram: f(id,, id,, id;) =

Count DB

unigram  bigram  trigram

078820 0381 60 /8820 038l 6078820 038l

5176595 | 0051 5176595 | 0051 5176595 | 0051

583 | 0076 5176583 | 0076 5176583 | 0076

28 | 0021 6576628 | 0021 6576628 | 0021

5176600 0018 5176600 0018 5176600 0018

5089320 | 0171 608932C 0171 5089320 (0171

76583 | 0039 5176583 | 0039 5176583 | 0039

4980420 0030 498042C 0030 4980420 0030

5020330 | 0482 502033C 0482 502033C 0482




Hashing vs Sorting

Sorting query: |5176595 ':aShing

val

C val

16078820 | 038l
15176583 | 0076

15176595 | 0051
15176595 | 0051

15176583 | 0076
15176600 | 0018

16078820 | 0381
16576628 | 0021

16089320 | 0171

;
16576628 | 0021 15176600 | 0018

4"
16980420 | 0030 16089320 | 0171

17020330 | 0482 15176583 | 0039

7176583 | 0039

14980420 | 0030

15020330 | 0482




Context Tries



E& Tries

e | a |[-45|«<—1* |4-gram|-8.4

this |-1.2| <= | is [-9.7

[\

~ | the [-3.7|«<—1 |4-gram|-6.8

e | a [-45|<—T* |4-gram|-3.2

that |-3.5|«<—t-o | is |-4.7

[\

® | the [-3.7| «<—+1 |4-gram|-2.0

[Hsu and Glass 2008]



p 3 Context Encodings

— 40-bits —«— 24-bits —
548029639 678 43|
< I o 4-gram -8.7

Google N-grams

e 10.5 bytes/n-gram
e 37 GB total

[Many details from Pauls and Klein, 2011]



¥

Context Encodings

| -grams

14
675
676
677
678
679
680
681
682
683

val

0127

9008

0137

0090

1192

0050

0040

0201

3010

20

«— . —>
bits

“this”

15176582
15176583
15176584
15176585
15176586
15176587
15176588
15176589
15176590

2-grams

C

w

val

00000480

682

0065

00000675

682

0808

00000802

682

0012

00001321

682

0400

00002482

682

0030

00002588

682

0260

00000390

683

0013

00000676

683

0025

00000984

683

0086

[

was

<«— 64 bits —>

20

«—

bits

"

42276773
42276774
42276775
42276776
42276777
42276778
42276779
42276780
4227678I

3-grams

C

w

val

15176583

678

0076

15176595

678

0051

15176600

678

0018

16078820

678

038l

16089320

678

0171

16576628

678

0021

14980420

680

0030

15020330

680

0482

15176583

680

0039

<«— 64 bits —>

20
bits

"



N-Gram Lookup

this is a 4-gram

p(0121 0374 0045 4820) =-8.7

000001210374 —>
0021

l24380|0 0045—> LM

|51 76583 4820



Compression



% |dea: Differential Compression

C w  val Ac  Aw val |Aw|  |Ac| |val|
15176585 | 678 | 3 15176583 | 678 | 3 40 24 | 3
15176587 | 678 | 2 +2 +0 | 2 3 2 | 3
15176593 | 678 | | +6 +0 | 1 3 2 | 3
15176613 | 678 | 8 +40 +0 | 8 9 2 | 6
15179801 | 678 | | +188 | +0 | | 12 2 | 3
15176585 | 680 | 298 15176585 | +2 | 298 36 4 | 15
15176589 | 680 | | +4 +0 | 1 6 2 | 3
15176585 | 678 | 563097887 [ 956 | 3 #2[+0 |2 [+6[+0] 1 |+40] +2 |8]-




E& Variable Length Encodings

Google N-grams

¢ 2.9 bytes/n-gram
« 10 GB total

Encoding “9”
lOOOH’IOO'Il

Length
in
Unary

Number
in
Binary

[Elias, 75]



Speed-Ups



¥

Rolling Queries

thisis + a 4-gram
12438010 0045 4820

val
12438010 0045 _> -7.8

this is a

suffix
\ val
15176583 4820 IM— -54
isa 4-gram
suffix

C

w

val

suffix

15176583

682

0065

00000480

15176595

682

0808

00000675

15176600

682

0012

00000802

16078820

682

0400

00001321

» 1498673 |




¥

ldea: Fast Caching

n-gram probability
124 80 42 1243 -7.034
37 2435 243 2| -2.394
804 42 4298 43 -8.008

hash( 124 80 42 1243 )

hash( 1423 43 42 400 ) =

0

LM can be more than
10x faster w/ direct-
address caching




p 3 Approximate LMs

=  Simplest option: hash-and-hope
= Array of size K~ N
= (optional) store hash of keys
= Store values in direct-address
= Collisions: store the max
=  What kind of errors can there be?

= More complex options, like bloom filters (originally for membership, but
see Talbot and Osborne 07), perfect hashing, etc

{x » z}

o fefofefefofoJofofoJofusfofsfofofsfo]




Maximum Entropy Models



% Improving on N-Grams?

= N-grams don’t combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

= Here:
= “the” gives syntactic constraint
= “demolition” gives semantic constraint

= Unlikely the interaction between these two has been densely
observed

= We'd like a model that can be more statistically efficient



Eﬁ Maximum Entropy LMs

= Want a model over completions y given a context x:

P(ylx) — P( door [ close the )

= Want to characterize the important aspects of y =
(v,x) using a feature function f

" F mightinclude
" |ndicator of v (unigram)
" |ndicator of v, previous word (bigram)
= |ndicator whether v occurs in x (cache)
" |ndicator of v and each non-adjacent previous word



p 3 Some Definitions

INPUTS X3 close the

CANDIDATE

SET y(X) { door, table, ...}
CANDIDATES y table

TRUE y%‘ door
OUTPUTS ?

FEATURE fi(y) [O 0001010000 O]

VECTORS f
/“C'/ose” in x A v=“door” /

v_,="the” A v="door” ) ..
door”’ in x and v



g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)

= Use the scores as probabilities:

exp(w ' f(y)) « Make positive
Zyl exp(w'f(y’)) < Normalize

P(ylx,w) =

= Maximize the (log) conditional likelihood of training data

exp(w ' £;(yF)) )
>y exp(w ! f;(y))

L(w) = 10 [ P(yilx;,w) = Y log (

=Y <waz~(y;f) —log ) exp(wai(y)))
i Yy



p 3 Maximum Entropy |

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= .. in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max (wai(y;k) - IogZexp(wai(y))) —k||w||?
) y

min k|lwl]2=Y" (Wsz‘(y;k) — log ZGXD(Wsz‘(Y))>
y

1



E.f’»m Derivative for Maximum Entropy

L(w) = —k||w[|*+Y_ (wai(y;k) —logy" exp(wai(y))>
) y

W) — okw+ Y (&(yi) 23 P(yxz->fi<y>>
Yy

Expected feature vector

Big weights are bad over possible candidates

Total count of feature nin
correct candidates



p 3 Convexity

* The maxent objective is nicely behaved:
= Differentiable (so many ways to optimize)
= Convex (so no local optima™)

fa+ (1 =X2)b) > Af(a) + (1 —A)f(b)

f(Aa-I— (1 —)\)bP :
----------- fla) + (1 =N/

Convex Non-Convex

Convexity guarantees a single, global maximum value because any
higher points are greedily reachable



% Unconstrained Optimization

= Once we have a function f, we can find a local optimum by
iteratively following the gradient

===

= For convex functions, a local optimum will be global

= Basic gradient ascent isn’t very efficient, but there are simple
enhancements which take into account previous gradients:
conjugate gradient, L-BFGs

= Online methods (e.g. AdaGrad) now very popular




W Implicit Representation

Explicit

C w  val
15176583 678 | 0076
15176595 678 | 0051
15176600| 678 [ 0018
16078820 678 | 0381
16089320] 678 | 0171
16576628 678 | 002
14980420 680 | 0030
15020330 680 | 0482 [‘the”
15176583 | 680 | 0039 l

<«—64 bits —> 2.0
bits

long[ ]

678
679
680
68|
682

Implicit

1802

1808

1892

S

1895

Google N-grams

6.5 bytes/n-gram
e 23 GB total

C val
1802 | 15176583 | 0076
1803 | 15176595 | 0051
1804 | 15176600 | 0018
1805 | 16078820 | 038l
1806 | 16089320 | 0171
1807 | 16576628 | 0021
1808 | 14980420 | 0030
1809 | 15020330 | 0482 [“the”
1810 | 15176583 | 0039 l

e_"

O

. 20
<«— 32 bits—> bits_,l
int[]



