
Language	Modeling	II
Taylor	Berg-Kirkpatrick	– CMU

Slides:	Dan	Klein	– UC	Berkeley

Algorithms	for	NLP

Announcements
§ Should	be	able	to	really	start	project	after	today’s	lecture

§ Get	familiar	with	bit-twiddling	in	Java	(e.g.	&,	|,	<<,	>>)

§ No	external	libraries	/	code

§ We	will	go	over	KN	again	in	recitation	– edge	cases

§ Tentative	office	hours:	
§ Me:			
§ Maria:
§ Hieu:
§ Akshay:

Language Models
§ Language	models	are	distributions	over	sentences

§ N-gram	models	are	built	from	local	conditional	probabilities

§ The	methods	we’ve	seen	are	backed	by	corpus	n-gram	counts

P̂ (wi|wi�1, wi�2) =
c(wi�2, wi�1, wi)

c(wi�2, wi�1)

Kneser-Ney Smoothing
§ Kneser-Ney	smoothing	combines	two	ideas

§ Discount	and	reallocate	like	absolute	discounting
§ In	the	backoff model,	word	probabilities	are	proportional	
to	context	fertility,	not	frequency

§ Theory	and	practice
§ Practice:	KN	smoothing	has	been	repeatedly	proven	both	
effective	and	efficient

§ Theory:	KN	smoothing	as	approximate	inference	in	a	
hierarchical	Pitman-Yor process	[Teh,	2006]

P (w) / |{w0 : c(w0, w) > 0}|

Kneser-Ney	Edge	Cases
§ All	orders	recursively	discount	and	back-off:

§ The	unigram	base	case	does	not	need	to	discount	(though	it	can)

§ Alpha	is	computed	to	make	the	probability	normalize	(but	if	context	count	
is	zero,	then	fully	back-off)

§ For	the	highest	order,	c’	is	the	token	count	of	the	n-gram.		For	all	others	it	
is	the	context	fertility	of	the	n-gram	(see	Chen	and	Goodman	p.	18):

c

0(x) = |{u : c(u, x) > 0}|

Pk(w|prevk�1) =
max(c0(prevk�1, w)� d, 0)P

v c
0
(prevk�1, v)

+ ↵(prev k � 1)Pk�1(w|prevk�2)

Idea	4:	Big	Data

There’s	no	data	like	more	data.

Data	>>	Method?
§ Having	more	data	is	better…

§ …	but	so	is	using	a	better	estimator
§ Another	issue:	N	>	3	has	huge	costs	in	speech	recognizers

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

1 2 3 4 5 6 7 8 9 10 20
n-gram order

E
nt

ro
py

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Tons	of	Data?

[Brants et	al,	2007]

What about…

Unknown Words?
§ What	about	totally	unseen	words?

§ Most	LM	applications	are	closed	vocabulary
§ ASR	systems	will	only	propose	words	that	are	in	their	pronunciation	

dictionary
§ MT	systems	will	only	propose	words	that	are	in	their	phrase	tables	

(modulo	special	models	for	numbers,	etc)

§ In	principle,	one	can	build	open	vocabulary	LMs
§ E.g.	models	over	character	sequences	rather	than	word	sequences
§ Back-off	needs	to	go	down	into	a	“generate	new	word”	model
§ Typically	if	you	need	this,	a	high-order	character	model	will	do

What’s	in	an	N-Gram?
§ Just	about	every	local	correlation!

§ Word	class	restrictions:	“will	have	been	___”
§ Morphology:	“she	___”,	“they	___”
§ Semantic	class	restrictions:	“danced	the	___”
§ Idioms:	“add	insult	to	___”
§ World	knowledge:	“ice	caps	have	___”
§ Pop	culture:	“the	empire	strikes	___”

§ But	not	the	long-distance	ones
§ “The	computer which	I	had	just	put	into	the	machine	room	
on	the	fifth	floor	___.”

What	Actually	Works?
§ Trigrams	and	beyond:

§ Unigrams,	bigrams	generally	
useless

§ Trigrams	much	better
§ 4-,	5-grams	and	more	are	

really	useful	in	MT,	but	gains	
are	more	limited	for	speech

§ Discounting
§ Absolute	discounting,	Good-

Turing,	held-out	estimation,	
Witten-Bell,	etc…

§ Context	counting
§ Kneser-Ney	construction	of	

lower-order	models

§ See	[Chen+Goodman]	reading	
for	tons	of	graphs…

[Graph from
Joshua Goodman]

What’s	in	an	N-Gram?
§ Just	about	every	local	correlation!

§ Word	class	restrictions:	“will	have	been	___”
§ Morphology:	“she	___”,	“they	___”
§ Semantic	class	restrictions:	“danced	the	___”
§ Idioms:	“add	insult	to	___”
§ World	knowledge:	“ice	caps	have	___”
§ Pop	culture:	“the	empire	strikes	___”

§ But	not	the	long-distance	ones
§ “The	computer which	I	had	just	put	into	the	machine	room	
on	the	fifth	floor	___.”

Linguistic	Pain?
§ The	N-Gram	assumption	hurts	one’s	inner	linguist!

§ Many	linguistic	arguments	that	language	isn’t	regular
§ Long-distance	dependencies
§ Recursive	structure

§ Answers
§ N-grams	only	model	local	correlations,	but	they	get	them	all
§ As	N	increases,	they	catch	even	more	correlations
§ N-gram	models	scale	much	more	easily	than	structured	LMs

§ Not	convinced?
§ Can	build	LMs	out	of	our	grammar	models	(later	in	the	course)
§ Take	any	generative	model	with	words	at	the	bottom	and	marginalize	

out	the	other	variables

What	Gets	Captured?

§ Bigram	model:
§ [texaco,	rose,	one,	in,	this,	issue,	is,	pursuing,	growth,	in,	a,	boiler,	

house,	said,	mr.,	gurria,	mexico,	's,	motion,	control,	proposal,	without,	
permission,	from,	five,	hundred,	fifty,	five,	yen]

§ [outside,	new,	car,	parking,	lot,	of,	the,	agreement,	reached]
§ [this,	would,	be,	a,	record,	november]

§ PCFG	model:
§ [This,	quarter,	‘s,	surprisingly,	independent,	attack,	paid,	off,	the,	risk,	

involving,	IRS,	leaders,	and,	transportation,	prices,	.]
§ [It,	could,	be,	announced,	sometime,	.]
§ [Mr.,	Toseland,	believes,	the,	average,	defense,	economy,	is,	drafted,	

from,	slightly,	more,	than,	12,	stocks,	.]

Other	Techniques?
§ Lots	of	other	techniques

§ Maximum	entropy	LMs	(soon)

§ Neural	network	LMs	(soon)

§ Syntactic	/	grammar-structured	LMs	(much	later)

How	to	Build	an	LM

Tons	of	Data
§ Good	LMs	need	lots	of	n-grams!

[Brants et al, 2007]

Storing	Counts
§ Key	function:	map	from	n-grams	to	counts

…
searching for the best 192593
searching for the right 45805
searching for the cheapest 44965
searching for the perfect 43959
searching for the truth 23165
searching for the “ 19086
searching for the most 15512
searching for the latest 12670
searching for the next 10120
searching for the lowest 10080
searching for the name 8402
searching for the finest 8171

…

Example:	Google	N-Grams

Efficient	Storage

Naïve	Approach

0

1

2

3

4

5

6

7

cat 12 the 87

and 76

dog 11

hash(cat)	=	2

hash(the)	=	2

hash(and)	=	5

hash(dog)	=	7

c(cat)	=	12

c(the)	=	87

c(and)	=	76

c(dog)	=	11

valuekey

c(have)	=	? hash(have)	=	2

A	Simple	Java	Hashmap?
Per 3-gram:
1 Pointer = 8 bytes
1 Map.Entry = 8 bytes (obj)

+3x8 bytes (pointers)
1 Double = 8 bytes (obj)

+ 8 bytes (double)
1 String[] = 8 bytes (obj) +

+ 3x8 bytes (pointers)

… at best Strings are canonicalized

Total: > 88 bytes

Obvious alternatives:
- Sorted arrays
- Open addressing

Open	Address	Hashing

0

1

2

3

4

5

6

7

hash(cat)	=	2

hash(the)	=	2

hash(and)	=	5

hash(dog)	=	7

c(cat)	=	12

c(the)	=	87

c(and)	=	76

c(dog)	=	11

valuekey

Open	Address	Hashing

cat

the

and

dog

0

1

2

3

4

5

6

7

hash(cat)	=	2

hash(the)	=	2

hash(and)	=	5

hash(dog)	=	7

c(cat)	=	12

c(the)	=	87

c(and)	=	76

c(dog)	=	11

12

87

5

7c(have)	=	?

valuekey

hash(have)	=	2

Open	Address	Hashing

0

1

2

3

4

5

6

7

hash(cat)	=	2

hash(the)	=	2

hash(and)	=	5

hash(dog)	=	7

c(cat)	=	12

c(the)	=	87

c(and)	=	76

c(dog)	=	11

valuekey

14

15

… … …

Efficient	Hashing
§ Closed	address	hashing

§ Resolve	collisions	with	chains
§ Easier	to	understand	but	bigger

§ Open	address	hashing
§ Resolve	collisions	with	probe	sequences
§ Smaller	but	easy	to	mess	up

§ Direct-address	hashing
§ No	collision	resolution
§ Just	eject	previous	entries
§ Not	suitable	for	core	LM	storage	

A	Simple	Java	Hashmap?
Per 3-gram:
1 Pointer = 8 bytes
1 Map.Entry = 8 bytes (obj)

+3x8 bytes (pointers)
1 Double = 8 bytes (obj)

+ 8 bytes (double)
1 String[] = 8 bytes (obj) +

+ 3x8 bytes (pointers)

… at best Strings are canonicalized

Total: > 88 bytes

Obvious alternatives:
- Sorted arrays
- Open addressing

Integer	Encodings

the				cat				laughed 233

n-gram count

7 1 15
word	ids

Bit	Packing

20	bits					20	bits				20	bits

Got	3	numbers	under	220 to	store?

Fits	in	a	primitive	64-bit	long

7 1 15
0…00111 0...00001 0...01111

Integer	Encodings

the				cat				laughed 233

n-gram count

15176595 =	

n-gram	encoding

Rank	Values

c(the)	=	23135851162	<	235

35	bits	to	represent	integers	between	0	and	235

15176595 233
n-gram	encoding count

60	bits 35	bits

Rank	Values

#	unique	counts	=	770000	<	220

20	bits	to	represent	ranks	of	all	counts

15176595 3
n-gram	encoding rank

60	bits 20	bits 0 1

1 2

2 51

3 233

rank freq

So	Far

trigrambigramunigram

Word	indexer

Rank	lookup

Count	DB

N-gram	encoding	scheme

unigram:			f(id)	=	id
bigram:					f(id1,	id2)	=	?
trigram:				f(id1,	id2,	id3)	=	?

Hashing	vs	Sorting

Context	Tries

Tries

Context	Encodings

[Many	details	from	Pauls and	Klein,	2011]

Context	Encodings

N-Gram	Lookup

Compression

Idea:	Differential Compression

Variable	Length	Encodings

000 1001

Encoding	“9”

Length	
in	

Unary

Number	
in

Binary

[Elias, 75]

2.9
10

Speed-Ups

Rolling Queries

Idea:	Fast	Caching

LM	can	be	more	than	
10x	faster	w/	direct-
address	caching

Approximate	LMs
§ Simplest	option:	hash-and-hope

§ Array	of	size	K	~	N
§ (optional)	store	hash	of	keys
§ Store	values	in	direct-address
§ Collisions:	store	the	max
§ What	kind	of	errors	can	there	be?

§ More	complex	options,	like	bloom	filters	(originally	for	membership,	but	
see	Talbot	and	Osborne	07),	perfect	hashing,	etc

Maximum	Entropy	Models

Improving	on	N-Grams?
§ N-grams	don’t	combine	multiple	sources	of	evidence	well

§ Here:
§ “the”	gives	syntactic	constraint
§ “demolition”	gives	semantic	constraint
§ Unlikely	the	interaction	between	these	two	has	been	densely	

observed

§ We’d	like	a	model	that	can	be	more	statistically	efficient

P(construction	|	After	the	demolition	was	completed,	the)

Maximum	Entropy	LMs

§ Want	a	model	over	completions	y	given	a	context	x:

§ Want	to	characterize	the	important	aspects	of	y	=	
(v,x)	using	a	feature	function	f

§ F	might	include
§ Indicator	of	v	(unigram)
§ Indicator	of	v,	previous	word	(bigram)
§ Indicator	whether	v	occurs	in	x	(cache)
§ Indicator	of	v	and	each	non-adjacent	previous	word
§ …

𝑃 𝑦 𝑥 = 𝑃()close	the	door	|	close	the

Some	Definitions

INPUTS

CANDIDATES

FEATURE
VECTORS

close the ____

CANDIDATE
SET

“door” in x and v

“close” in x Ù v=“door”

v-1=“the” Ù v=“door”

TRUE
OUTPUTS

{close the door, close the table, …}

close the table

close the door

Linear	Models:	Maximum	Entropy

§ Maximum	entropy	(logistic	regression)
§ Use	the	scores	as	probabilities:

§ Maximize	the	(log)	conditional	likelihood	of	training	data

Make	positive
Normalize

Maximum	Entropy	II

§ Motivation	for	maximum	entropy:
§ Connection	to	maximum	entropy	principle	(sort	of)
§ Might	want	to	do	a	good	job	of	being	uncertain	on	noisy	
cases…

§ …	in	practice,	though,	posteriors	are	pretty	peaked

§ Regularization	(smoothing)

Derivative	for	Maximum	Entropy

Big	weights	are	bad

Total	count	of	feature	n	in	
correct	candidates

Expected	feature	vector	
over	possible	candidates

Convexity

§ The	maxent objective	is	nicely	behaved:
§ Differentiable (so	many	ways	to	optimize)
§ Convex (so	no	local	optima*)

Convex Non-Convex
Convexity guarantees a single, global maximum value because any
higher points are greedily reachable

Unconstrained	Optimization

§ Once	we	have	a	function	f,	we	can	find	a	local	optimum	by	
iteratively	following	the	gradient

§ For	convex	functions,	a	local	optimum	will	be	global
§ Basic	gradient	ascent	isn’t	very	efficient,	but	there	are	simple	

enhancements	which	take	into	account	previous	gradients:	
conjugate	gradient,	L-BFGs

§ Online	methods	(e.g.	AdaGrad)	now	very	popular

Implicit	Representation

