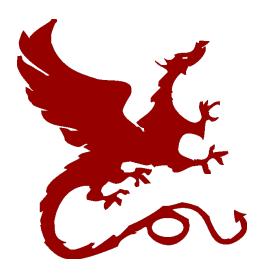
Algorithms for NLP



Language Modeling II

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

Announcements

- Should be able to really start project after today's lecture
- Get familiar with bit-twiddling in Java (e.g. &, |, <<, >>)
- No external libraries / code
- We will go over KN again in recitation edge cases
- Tentative office hours:
 - Me:
 - Maria:
 - Hieu:
 - Akshay:

Language Models

Language models are distributions over sentences

$$P(w_1 \dots w_n)$$

N-gram models are built from local conditional probabilities

$$P(w_1 \dots w_n) = \prod_i P(w_i | w_{i-k} \dots w_{i-1})$$

The methods we've seen are backed by corpus n-gram counts

$$\hat{P}(w_i|w_{i-1},w_{i-2}) = \frac{c(w_{i-2},w_{i-1},w_i)}{c(w_{i-2},w_{i-1})}$$

Kneser-Ney Smoothing

- Kneser-Ney smoothing combines two ideas
 - Discount and reallocate like absolute discounting
 - In the backoff model, word probabilities are proportional to context fertility, not frequency

$$P(w) \propto |\{w' : c(w', w) > 0\}|$$

- Theory and practice
 - Practice: KN smoothing has been repeatedly proven both effective and efficient
 - Theory: KN smoothing as approximate inference in a hierarchical Pitman-Yor process [Teh, 2006]

Kneser-Ney Edge Cases

• All orders recursively discount and back-off:

$$P_k(w|\text{prev}_{k-1}) = \frac{\max(c'(\text{prev}_{k-1}, w) - d, 0)}{\sum_v c'(\text{prev}_{k-1}, v)} + \alpha(\text{prev } k - 1)P_{k-1}(w|\text{prev}_{k-2})$$

- The unigram base case does not need to discount (though it can)
- Alpha is computed to make the probability normalize (but if context count is zero, then fully back-off)
- For the highest order, c' is the token count of the n-gram. For all others it is the context fertility of the n-gram (see Chen and Goodman p. 18):

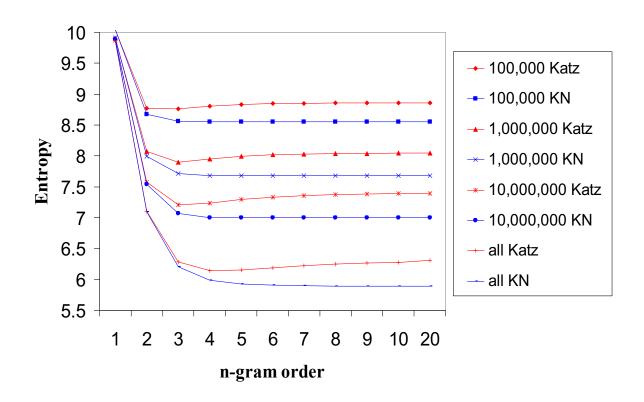
$$c'(x) = |\{u : c(u, x) > 0\}|$$

Idea 4: Big Data

There's no data like more data.

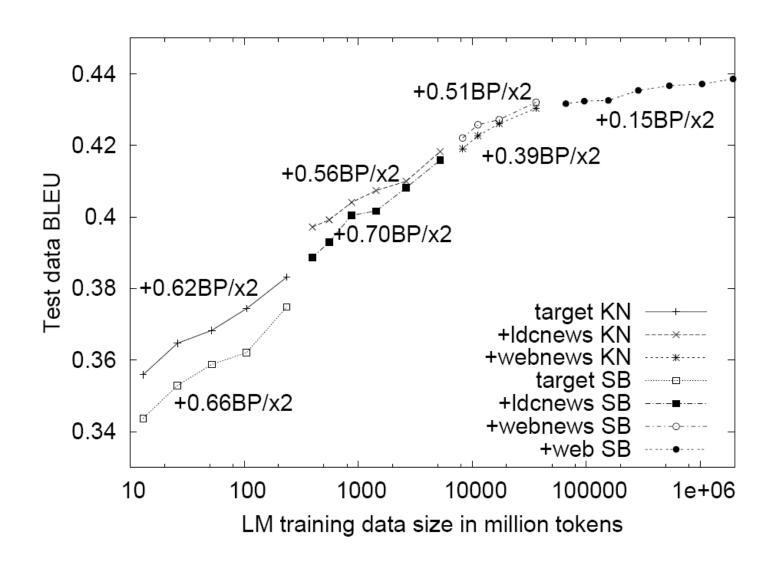
Data >> Method?

Having more data is better...



- ... but so is using a better estimator
- Another issue: N > 3 has huge costs in speech recognizers

Tons of Data?



What about...

Unknown Words?

- What about totally unseen words?
- Most LM applications are closed vocabulary
 - ASR systems will only propose words that are in their pronunciation dictionary
 - MT systems will only propose words that are in their phrase tables (modulo special models for numbers, etc)
- In principle, one can build open vocabulary LMs
 - E.g. models over character sequences rather than word sequences
 - Back-off needs to go down into a "generate new word" model
 - Typically if you need this, a high-order character model will do

What's in an N-Gram?

- Just about every local correlation!
 - Word class restrictions: "will have been ____"
 - Morphology: "she ____", "they ____"
 - Semantic class restrictions: "danced the "
 - Idioms: "add insult to "
 - World knowledge: "ice caps have ____"
 - Pop culture: "the empire strikes ____"
- But not the long-distance ones
 - "The computer which I had just put into the machine room on the fifth floor ____."

What Actually Works?

Trigrams and beyond:

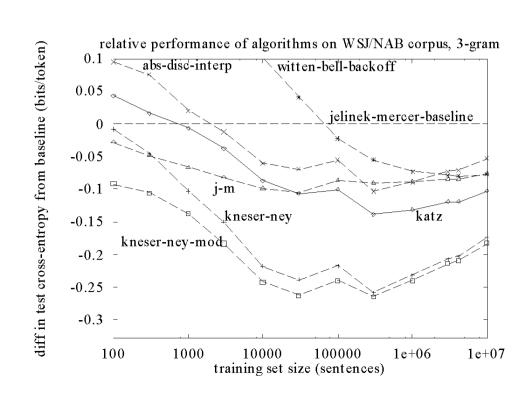
- Unigrams, bigrams generally useless
- Trigrams much better
- 4-, 5-grams and more are really useful in MT, but gains are more limited for speech

Discounting

 Absolute discounting, Good-Turing, held-out estimation, Witten-Bell, etc...

Context counting

- Kneser-Ney construction of lower-order models
- See [Chen+Goodman] reading for tons of graphs...



[Graph from Joshua Goodman]

What's in an N-Gram?

- Just about every local correlation!
 - Word class restrictions: "will have been ____"
 - Morphology: "she ____", "they ____"
 - Semantic class restrictions: "danced the "
 - Idioms: "add insult to ____"
 - World knowledge: "ice caps have ____"
 - Pop culture: "the empire strikes ____"
- But not the long-distance ones
 - "The computer which I had just put into the machine room on the fifth floor ____."

Linguistic Pain?

- The N-Gram assumption hurts one's inner linguist!
 - Many linguistic arguments that language isn't regular
 - Long-distance dependencies
 - Recursive structure

Answers

- N-grams only model local correlations, but they get them all
- As N increases, they catch even more correlations
- N-gram models scale much more easily than structured LMs

Not convinced?

- Can build LMs out of our grammar models (later in the course)
- Take any generative model with words at the bottom and marginalize out the other variables

What Gets Captured?

Bigram model:

- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]
- [outside, new, car, parking, lot, of, the, agreement, reached]
- [this, would, be, a, record, november]

PCFG model:

- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
- [It, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

Other Techniques?

Lots of other techniques

Maximum entropy LMs (soon)

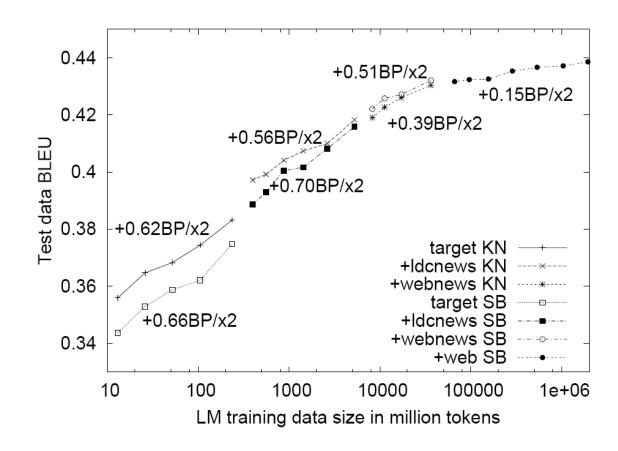
Neural network LMs (soon)

Syntactic / grammar-structured LMs (much later)

How to Build an LM

Tons of Data

Good LMs need lots of n-grams!



Storing Counts

Key function: map from n-grams to counts

•••	searching for the finest	searching for the name	searching for the lowest	searching for the next	searching for the latest	searching for the most	searching for the "	searching for the truth	searching for the perfect	searching for the cheapest	searching for the right	searching for the best	•••
	8171	8402	10080	10120	12670	15512	19086	23165	43959	44965	45805	192593	

Example: Google N-Grams

Google N-grams

- 14 million < 2²⁴ words
- 2 billion < 2³¹ 5-grams
- 770 000 < 2²⁰ unique counts
- 4 billion n-grams total

Efficient Storage

Naïve Approach

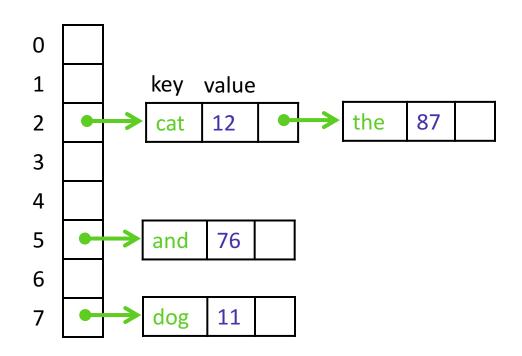
$$c(cat) = 12$$
 hash(cat) = 2

$$c(the) = 87$$
 hash(the) = 2

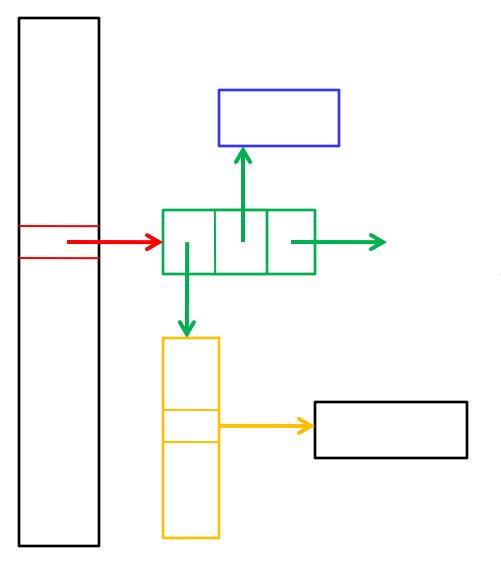
$$c(and) = 76$$
 hash(and) = 5

$$c(dog) = 11$$
 hash $(dog) = 7$

c(have) = ? hash(have) = 2



A Simple Java Hashmap?



```
Per 3-gram:
1 Pointer = 8 bytes
```

1 Map.Entry = 8 bytes (obj) +3x8 bytes (pointers)

1 Double = 8 bytes (obj)

+ 8 bytes (double)

1 String[] = 8 bytes (obj) +

+ 3x8 bytes (pointers)

... at best Strings are canonicalized

Total: > 88 bytes

Obvious alternatives:

- Sorted arrays
- Open addressing

Open Address Hashing

c(cat) = 12 hash(cat) = 2

c(the) = 87 hash(the) = 2

c(and) = 76 hash(and) = 5

c(dog) = 11 hash(dog) = 7

key va

1

0

2

3

4

5

7

value

Open Address Hashing

c(cat) = 12 hash(cat) = 2

c(the) = 87 hash(the) = 2

c(and) = 76 hash(and) = 5

c(dog) = 11 hash(dog) = 7

c(have) = ? hash(have) = 2

key

value

0

1

2 cat

3 the

4

5 and

6

dog dog

12

87

5

7

Open Address Hashing

$$c(cat) = 12$$

$$hash(cat) = 2$$

$$c(the) = 87$$

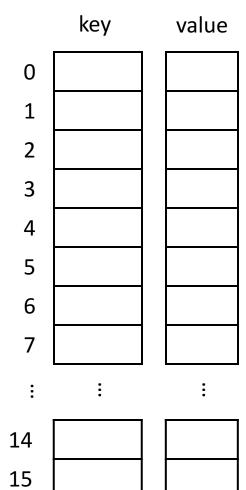
$$hash(the) = 2$$

$$c(and) = 76$$

$$hash(and) = 5$$

$$c(dog) = 11$$

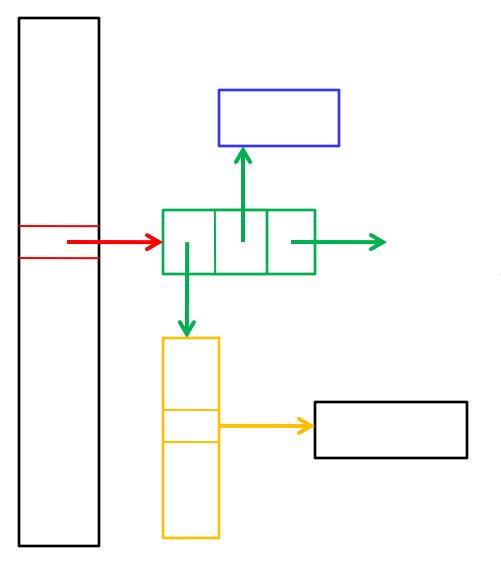
 h_1 sh(dog) = 7



Efficient Hashing

- Closed address hashing
 - Resolve collisions with chains
 - Easier to understand but bigger
- Open address hashing
 - Resolve collisions with probe sequences
 - Smaller but easy to mess up
- Direct-address hashing
 - No collision resolution
 - Just eject previous entries
 - Not suitable for core LM storage

A Simple Java Hashmap?



```
Per 3-gram:
1 Pointer = 8 bytes
```

1 Map.Entry = 8 bytes (obj) +3x8 bytes (pointers)

1 Double = 8 bytes (obj)

+ 8 bytes (double)

1 String[] = 8 bytes (obj) +

+ 3x8 bytes (pointers)

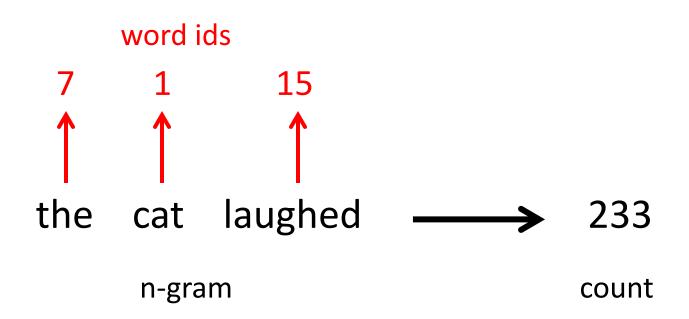
... at best Strings are canonicalized

Total: > 88 bytes

Obvious alternatives:

- Sorted arrays
- Open addressing

Integer Encodings



Bit Packing

Got 3 numbers under 2²⁰ to store?

```
7 1 15
0...00111 0...00001 0...01111
20 bits 20 bits 20 bits
```

Fits in a primitive 64-bit long

Integer Encodings

n-gram encoding

Rank Values

$$c(the) = 23135851162 < 2^{35}$$

35 bits to represent integers between 0 and 2³⁵

Rank Values

unique counts = $770000 < 2^{20}$

20 bits to represent ranks of all counts

rank	freq
0	1
1	2
2	51
3	233

So Far

Word indexer

word id

cat	0
the	1
was	2
ran	3

Rank lookup

rank freq

0	1
1	2
2	51
3	233

N-gram encoding scheme

unigram: f(id) = id

bigram: $f(id_1, id_2) = ?$

trigram: $f(id_1, id_2, id_3) = ?$

Count DB

unigram bigram trigram

16078820	0381
15176595	0051
15176583	0076
_	_
16576628	0021
15176600	0018
16089320	0171
15176583	0039
14980420	0030
	_
15020330	0482

0381
005 I
0076
_
0021
—
0018
0171
0039
0030
_
0482

16078820	0381
15176595	0051
15176583	0076
_	_
16576628	0021
15176600	0018
16089320	0171
15176583	0039
14980420	0030
	_
15020330	0482

Hashing vs Sorting

Sorting

c val

15176583	0076
15176595	0051
15176600	0018
16078820	0381
16089320	0171
16576628	0021
16980420	0030
17020330	0482
17176583	0039

query: |5|76595

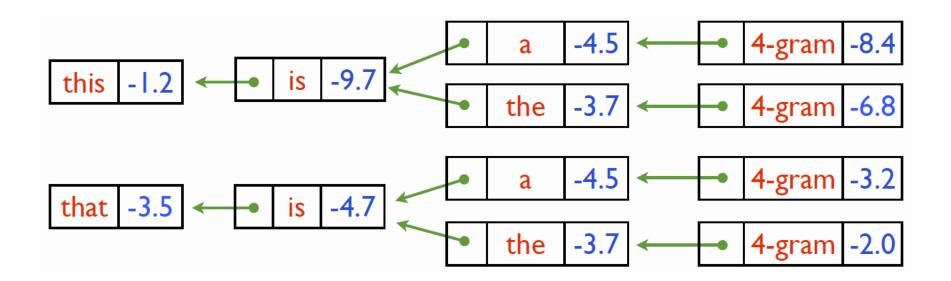
Hashing

c val

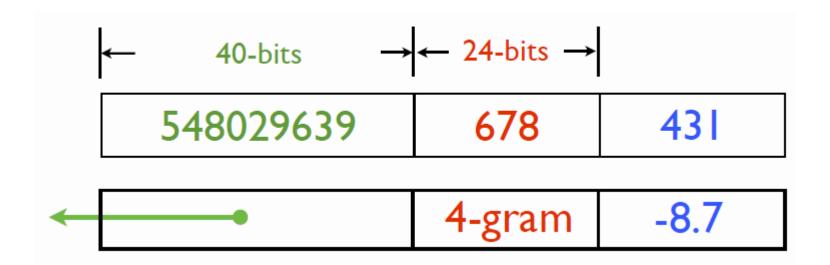
16078820	0381
15176595	0051
15176583	0076
16576628	0021
15176600	0018
16089320	0171
15176583	0039
14980420	0030
_	
15020330	0482

Context Tries

Tries



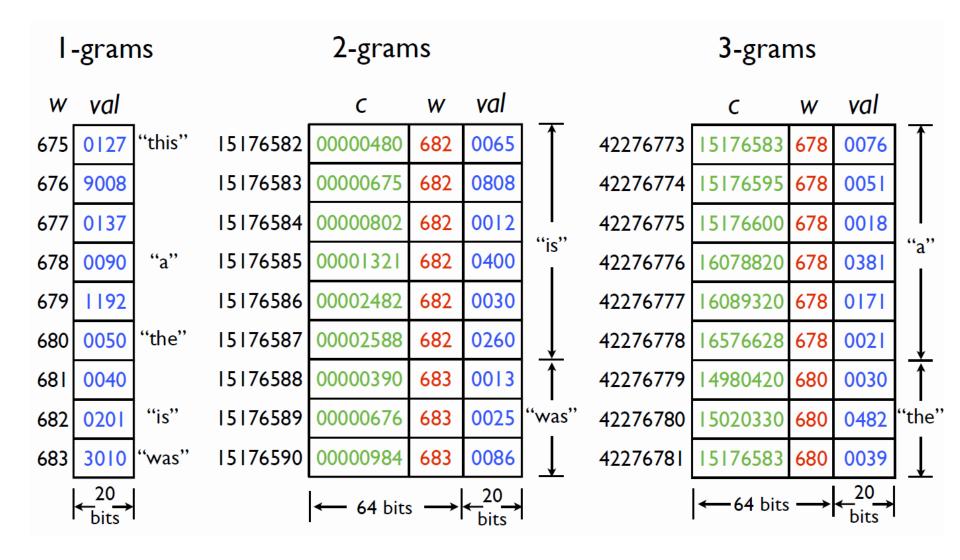
Context Encodings



Google N-grams

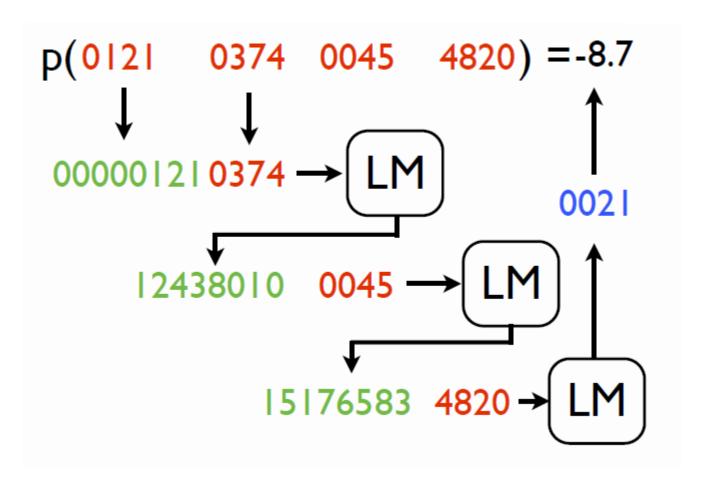
- 10.5 bytes/n-gram
- 37 GB total

Context Encodings



N-Gram Lookup

this is a 4-gram



Compression

Idea: Differential Compression

С	W	val
15176585	678	3
15176587	678	2
15176593	678	- 1
15176613	678	8
15179801	678	- 1
15176585	680	298
15176589	680	- 1

Δc	Δw	val
15176583	678	3
+2	+0	2
+6	+0	- 1
+40	+0	8
+188	+0	- 1
15176585	+2	298
+4	+0	I

$ \Delta w $	$ \Delta c $	val
40	24	3
3	2	3
3	2	3
9	2	6
12	2	3
36	4	15
6	2	3

Variable Length Encodings

Encoding "9"

,000,,1001

Length in Unary

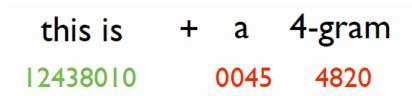
Number in Binary

Google N-grams

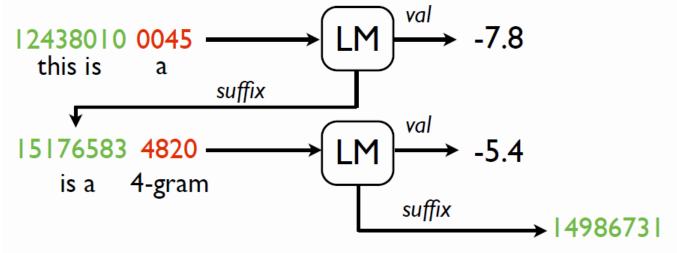
- 2.9 bytes/n-gram
- 10 GB total

Speed-Ups

Rolling Queries



С	W	val	suffix
15176583	682	0065	00000480
15176595	682	0808	00000675
15176600	682	0012	00000802
16078820	682	0400	00001321



Idea: Fast Caching

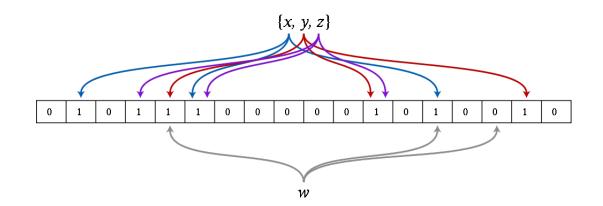
	n-gram	probability
0	124 80 42 1243	-7.034
1	37 2435 243 21	-2.394
2	804 42 4298 43	-8.008

```
hash( 124 80 42 1243 ) =0
```

LM can be more than 10x faster w/ direct-address caching

Approximate LMs

- Simplest option: hash-and-hope
 - Array of size K ~ N
 - (optional) store hash of keys
 - Store values in direct-address
 - Collisions: store the max
 - What kind of errors can there be?
- More complex options, like bloom filters (originally for membership, but see Talbot and Osborne 07), perfect hashing, etc



Maximum Entropy Models

Improving on N-Grams?

N-grams don't combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

- Here:
 - "the" gives syntactic constraint
 - "demolition" gives semantic constraint
 - Unlikely the interaction between these two has been densely observed
- We'd like a model that can be more statistically efficient

Maximum Entropy LMs

Want a model over completions y given a context x:

$$P(y|x) = P(\text{ close the door } | \text{ close the })$$

- Want to characterize the important aspects of y = (v,x) using a feature function f
- F might include
 - Indicator of v (unigram)
 - Indicator of v, previous word (bigram)
 - Indicator whether v occurs in x (cache)
 - Indicator of v and each non-adjacent previous word
 - **-** ...

Some Definitions

INPUTS

 \mathbf{X}_i

close the ____

CANDIDATE SET

 $\mathcal{Y}(\mathbf{x})$

{close the door, close the table, ...}

CANDIDATES

y

close the table

TRUE OUTPUTS \mathbf{y}_i^*

close the door

FEATURE VECTORS

 $\mathbf{f}_i(\mathbf{y})$

[0 0 0 0 1 0 1 0 0 0 0 0]
"close" in x \(\) v="door"

 v_{-1} ="the" \wedge v="door"

"door" in x and v

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} P(\mathbf{y}_{i}^{*} | \mathbf{x}_{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Maximum Entropy II

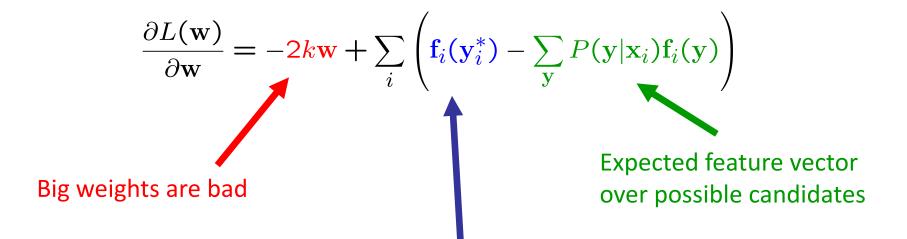
- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked

Regularization (smoothing)

$$\begin{aligned} & \max_{\mathbf{w}} & \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2} \\ & \min_{\mathbf{w}} & k ||\mathbf{w}||^{2} - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) \end{aligned}$$

Derivative for Maximum Entropy

$$L(\mathbf{w}) = -\frac{k||\mathbf{w}||^2}{+} \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})) \right)$$

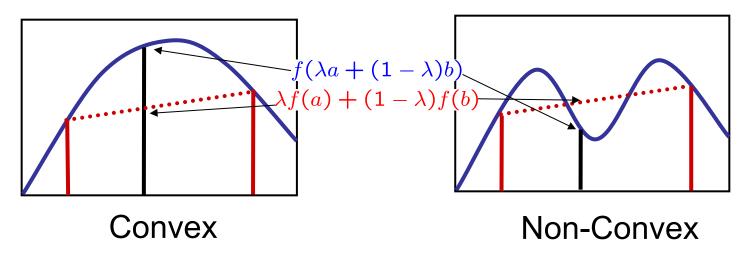


Total count of feature n in correct candidates

Convexity

- The maxent objective is nicely behaved:
 - Differentiable (so many ways to optimize)
 - Convex (so no local optima*)

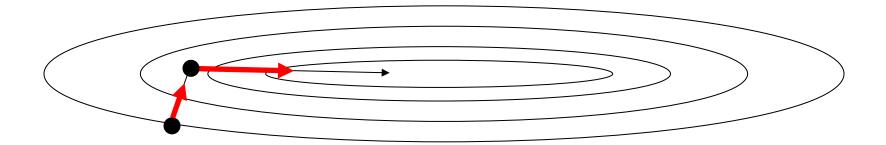
$$f(\lambda a + (1 - \lambda)b) \ge \lambda f(a) + (1 - \lambda)f(b)$$



Convexity guarantees a single, global maximum value because any higher points are greedily reachable

Unconstrained Optimization

 Once we have a function f, we can find a local optimum by iteratively following the gradient



- For convex functions, a local optimum will be global
- Basic gradient ascent isn't very efficient, but there are simple enhancements which take into account previous gradients: conjugate gradient, L-BFGs
- Online methods (e.g. AdaGrad) now very popular

Implicit Representation

